Differential cholinergic regulation of dopamine release in the dorsal and ventral neostriatum of the rat: an in vivo microdialysis study.
نویسندگان
چکیده
We used in vivo microdialysis to investigate the effects of local perfusion with the AChE inhibitor neostigmine on the basal and haloperidol evoked increase in dialysate dopamine levels in the dorsolateral and fundus striata of the bilaterally implanted halothane anaesthetized rat. In the absence of neostigmine basal dopamine was consistently higher in the dorsolateral striatum compared with the fundus striati. Local perfusion with neostigmine (10 and 100 microM) increased basal dopamine in the fundus striati compared to the contralateral (control) side but not in the dorsolateral striatum. In the absence of neostigmine haloperidol (0.05-0.5 mg/kg, s.c.) increased dopamine release in both the dorsolateral and fundus striata. However, local perfusion with neostigmine (10 microM) attenuated this increase in the dorsolateral striatum at all doses of haloperidol while only the effect of the highest (0.5 mg/kg) dose of haloperidol was counteracted in the fundus striati. Both the basal and haloperidol (0.25 mg/kg) induced increase in dopamine release in the control (no neostigmine) and neostigmine (+10 microM) treated dorsolateral striata were abolished following local perfusion with tetrodotoxin (1 microM). The data demonstrate that the introduction of neostigmine into the neostriatum selectively increases basal DNA levels in the fundus striati and strongly counteracts the haloperidol evoked DA release in the dorsolateral striatum and thus provide strong evidence for a differential cholinergic regulation of striatal DA release in vivo. In addition, we demonstrate that the stimulatory and inhibitory effects of neostigmine operate independently and have a regional specificity within the neostriatum.
منابع مشابه
Morphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats
Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...
متن کاملMorphine releases glutamate through AMPA receptors in the ventral tegmental area: a microdialysis study in conscious rats
Drug addiction has developed to a social illness. Changes in glutamate transmission have been recorded by the repeated administration of addictive drugs into VTA. In this investigation, In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Rats were anesthetized with chloral hydrate (350 mg/kg, i.p.) and...
متن کاملMORPHINE RELE ASES GLUTAMATE THROUGH AMPA RECEPTORS IN THE VENTRAL TEGMENTAL AREA: A MICRODIALYSIS STUDY IN CONSCIOUS RATS
In vivo microdialysis was used to study the effects of morphine on glutamate release from the ventral tegmentum area (VTA) in freely moving rats. Intraperitoneal (i.p.) injection of acute and repeated morphine at increasing doses significantly enhanced glutamate release. Only a minor tolerance developed to this dosage of morphine. AP-S (2-amino-5-phosphonovaleric acid, 0.5 mg/kg i.p.), a N...
متن کاملThe role of muscarnic cholinergic receptor of the bed nucleus of stria terminalis on cardiovascular response and baroreflex modulation in rat.
Introduction: The bed nucleus of the stria terminalis (BST) is a limbic structure which is involved in cardiovascular regulation and baroreflex modulation. The presence of cholinergic synaptic terminalis with high level of muscarinic receptors in the BST has been demonstrated. This study was performed to find the role of the cholinergic muscarinic receptor in cardiovascular response and baro...
متن کاملThe Involvement of Intra-Hippocampal Dopamine Receptors in the Conditioned Place Preference Induced By Orexin Administration into the Rat Ventral Tegmental Area
The activity of dopamine (DA)-containing neurons in the ventral tegmental area (VTA) is a key mechanism in mesolimbic reward processing that has modulatory effects on different diencephalic structures like hippocampus (HIP), and receives inhibitory feedback and excitatory feed forward control. In addition, within the hippocampus, DA receptors are mostly located in the dorsal part (CA1) and dopa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 15 12 شماره
صفحات -
تاریخ انتشار 1995